miércoles, 23 de octubre de 2013

la robótica y sus aplicacionmes

La robótica y sus aplicaciones

A modo de introducción, debemos hacer referencia al origen de la palabra Robot, si bien desde la antigüedad se conocen ingenios mecánicos con formas más o menos humanas cuyo propósito fue proveer diversión en las cortes o llamar la atención de la gente, estos ingenios carecen de importancia desde el punto de vista tecnológico, precisamente por su destino.
El término Robot fue acuñado por el escritor checoslovaco Karel Kapek, fallecido en 1938, que adquirió fama mundial con su obra R.U.R en la que presenta al obrero moderno como un esclavo mecánico, es allí donde justamente emplea la palabra Robot, tomada del eslavo Robota, que significa trabajo. Es este aspecto que sí nos interesa y sobre el cual haremos algunas consideraciones.
Norber Winer, matemático norteamericano, que introdujo el término cibernética y su teoría, refiriéndose al mismo tema, expresó:
"Es una degradación para un ser humano encadenarlo a un remo y usarlo como fuente de energía; pero es casi igual degradación asignarle tareas puramente repetitivas en una fábrica, que exigen menos de una millonésima de su poder cerebral".
Es más sencillo organizar una fábrica que utiliza individualidades humanas aprovechando sólo una fracción trivial de su valía, que preparar un mundo en el que estos puedan alcanzar su plena dimensión.
La aplicación del Taylorismo ha traído como consecuencia no sólo condiciones particulares de consumo y cultura, sino también resulta ser el responsable de la creación de condiciones de trabajo repetitivas, monótonas, alienantes y degradantes para quien las efectúa.
No son pocos los intentos que se efectúan con el ánimo de modificar las condiciones de trabajo comentadas, estos intentos que describiremos rápidamente y que reciben denominaciones tan atractivas como:
"Rotación del trabajo" (Job-rotation) o "Ensanchamiento del trabajo" (Job-enlargement) consisten por ejemplo en que los trabajadores José, Pedro y Juan cumplan alternativamente los trabajos repetitivos X, Y y Z. Como podemos comprender se trata de una solución falsa, en la que operarios cumplen una serie de operaciones repetitivas, al final de las cuales deberán comenzar nuevamente. El "Trabajo enriquecido" (job-enrichement) agrega a la rotación ya descrita la ejecución de tareas no repetitivas, como por ejemplo el mantenimiento. Un ejemplo de este sistema en el que se han puesto grandes esperanzas, lo constituyeron las islas de montaje en la industria automotriz Sueca.
Los resultados obtenidos hasta el presente no justifican las expectativas iniciales. Hasta el momento sólo la Robotización del trabajo o Robótica aparece como el medio capaz de superar al Taylorismo mediante una revalorización de su filosofía, cuya racionalidad consiste en haber parcializado el trabajo, pero su irracionalidad se manifiesta en el último eslabón del proceso, constituido por el empleo de un ser "inteligente" en una operación estúpida.
La aplicación de los robots se enfoca prácticamente a cualquier tarea que el ser humano pueda realizar, abriéndose así el campo de investigación para la robótica. Las principales restricciones para la investigación de cómo realizar cierta tarea son el costo en dinero y tiempo y esto precisamente es lo que ha definido las áreas de investigación en la robótica. Debido a estas restricciones, las principales aplicaciones que se tienen actualmente son en manufactura y cuyo aumento esperado en productividad justifica la inversión. Es por ello que en nuestro trabajo nos centraremos en el estudio de la robótica industrial, principalmente.

http://www.monografias.com/trabajos10/robap/robap.shtml#ixzz2iZMwzKEp

La robótica ha producido muchos avances militares en cuanto a tecnololgía de combate se refiere.Actualmente el ejercito de los Estados Unidos utiliza una serie de robots terrestres que estan equipados con equipos GPS , cámaras láser y de visión nocturna , y radares, y tienen la capacidad de moverse sobre terrenos muy difíciles.Su tarea,por el momento , es ayudar en la busqueda de sobrevivientes ,reconocer terrenos y testear armas químicas .Sin embargo,hay algunos prototipos que ya tienen la capacidad de evaluar juicios instantaneos y de actuar conforme a ellos ,es decir;crear un plan.En la aeronáutica militar se ha implementado,hace unos años ,aviones espías que son utilizados para reconocimientos en zonas urbanas.Tienen la habilidad de reconocer como objetivos concretos,incluso entre una multitud .Son muy útiles en ese campo así como en la persecución de objetivos en tiempo real .La Marina tampoco se ha quedado atrás, y cuenta en sus filas con robots anfibios autómatas diseñados para sumergirse a grandes profundidades .Se los utiliza en busca de minas de mar y posibles barcos enemigos; tiene que emerger para transmitir la información vía satélite ,pero permanecer durante un mes en el océano sin la necesidad de ser realimentado con energía .Otro avance en el campo militar son los robots que detectaron y desactivan minas terrestres .Estas máquinas cumplen la riesgosa misión de descpejar campos minados en diferentes lugares del mundo ,reduciendo considerablemente la perdida de vidas humanas en este riesgoso trabajo . 
http://www.taringa.net/posts/apuntes-y-monografias/10483611/La-Robotica-y-sus-usos.html


                                                   http://conciencia.hostei.com/robotica/imagenes/imagenintroduccion1.jpg




miércoles, 16 de octubre de 2013

Fibra optica

Fibra óptica


La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envíanpulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede serláser o un LED.


Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio y superiores a las de cable convencional. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagnéticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.
http://es.wikipedia.org/wiki/Fibra_%C3%B3ptica
La fibra óptica es una delgada hebra de vidrio o silicio fundido que conduce la luz. Se requieren dos filamentos para una comunicación bi-direccional: TX y RX.



El grosor del filamento es comparable al grosor de un cabello humano, es decir, aproximadamente de 0,1 mm. En cada filamento de fibra óptica podemos apreciar 3 componentes:
La fuente de luz: LED o laser.
el medio transmisor : fibra óptica.
el detector de luz: fotodiodo.Un cable de fibra óptica está compuesto por: Núcleo, manto,recubrimiento, tensores y chaqueta.
Las fibras ópticas se pueden utilizar con LAN, así como para transmisión de largo alcance, aunque derivar en ella es más complicado que conectarse a una Ethernet. La interfaz en cada computadora pasa la corriente de pulsos de luz hacia el siguiente enlace y también sirve como unión T para que la computadora pueda enviar y recibir mensajes.
Convencionalmente, un pulso de luz indica un bit 1 y la ausencia de luz indica un bit 0. El detector genera un pulso eléctrico cuando la luz incide en él. Éste sistema de transmisión tendría fugas de luz y sería inútil en la práctica excepto por un principio interesante de la física. Cuando un rayo de luz pasa de un medio a otro, el rayo se refracta (se dobla) entre las fronteras de los medios.
http://neo.lcc.uma.es/evirtual/cdd/tutorial/fisico/fibra.html





https://encrypted-tbn3.gstatic.com/images?q=tbn:ANd9GcQ1v-BP5YwB3UidSB-DxHzC6WAV_iC1qhx4BWWRPpknOMezC6TU

miércoles, 2 de octubre de 2013



CARACTERÍSTICAS GENERALES DE LA LUZ LÁSER.
En estos momentos estamos en condiciones de comenzar el estudio de las características fundamentales de la radiación láser que se caracteriza por una serie de propiedades, diferentes de cualquier otra fuente de radiación electromagnética, como son:


1. Monocromaticidad.


Emite una radiación electromagnética de una sola longitud de onda, en oposición a las fuentes convencionales como las lámparas incandescentes (bombillas comunes) que emiten en un rango más amplio, entre el visible y el infrarrojo, de ahí que desprendan calor. La longitud de onda, en el rango del espectro electromagnético de la luz visible, se identifica por los diferentes colores (rojo, naranja, amarillo, verde, azul, violeta), estando la luz blanca compuesta por todos ellos. Esto se observa fácilmente al hacer pasar un haz de luz blanca a través de un prisma.

2. Coherencia espacial o direccionabilidad.

La radiación láser tiene una divergencia muy pequeña, es decir, puede ser proyectado a largas distancias sin que el haz se abra o disemine la misma cantidad de energía en un área mayor.

Nota: Esta propiedad se utilizó para calcular la longitud entre la Tierra y la Luna, al enviar un haz láser hacia la Luna, donde rebotó sobre un pequeño espejo situado en su superficie, y éste fue medido en la Tierra por un telescopio.

3. Coherencia temporal.

La luz láser se transmite de modo paralelo en una única dirección debido a su naturaleza de radiación estimulada, al estar constituido el haz láser con rayos de la misma fase, frecuencia y amplitud.

FÍSICA DEL LASER

De forma general los láseres constan de un medio activo capaz de generar el láser. Hay cuatro procesos básicos que se producen en la generación del láser, denominados bombeo, emisión espontánea de radiación, emisión estimulada de radiación y absorción.

Bombeo

Se provoca mediante una fuente de radiación como puede ser una lámpara, el paso de una corriente eléctrica o el uso de cualquier otro tipo de fuente energética que provoque una emisión.

Emisión espontánea de radiación

Los electrones que vuelven al estado fundamental emiten fotones. Es un proceso aleatorio y la radiación resultante está formada por fotones que se desplazan en distintas direcciones y con fases distintas generándose una radiación monocromática incoherente.

Emisión estimulada de radiación

La emisión estimulada, base de la generación de radiación de un láser, se produce cuando un átomo en estado excitado recibe un estímulo externo que lo lleva a emitir fotones y así retornar a un estado menos excitado. El estímulo en cuestión proviene de la llegada de un fotón con energía similar a la diferencia de energía entre los dos estados. Los fotones así emitidos por el átomo estimulado poseen fase, energía y dirección similares a las del fotón externo que les dio origen. La emisión estimulada descrita es la raíz de muchas de las características de la luz láser. No sólo produce luz coherente y monocroma, sino que también "amplifica" la emisión de luz, ya que por cada fotón que incide sobre un átomo excitado se genera otro fotón.

Absorción

Proceso mediante el cual se absorbe un fotón. El sistema atómico se excita a un estado de energía más alto, pasando un electrón al estado metaestable. Este fenómeno compite con el de la emisión estimulada de radiación.

Esquema del funcionamiento del LASER de tres niveles de engría. (Fig. 1)




TIPOS DE LASER

1. El láser de Rubí

Recordemos que fue el primer láser y que fue construido por Theodore Maiman en 1960, quien usó como medio activo un cristal de rubí sintético. El rubí es una piedra preciosa formada por cristales de óxido de aluminio Al2O3, que contiene una pequeña concentración de alrededor de 0.05% de impurezas de óxido de cromo Cr2O3 (el óxido de aluminio puro, Al2O3, se llama zafiro). La presencia del óxido de cromo hace que el transparente cristal puro de óxido de aluminio se torne rosado y llegue a ser hasta rojizo si la concentración de óxido de cromo aumenta. La forma geométrica típica que adopta el rubí usado en un láser es la de unas barras cilíndricas de 1 a 15 mm de radio y algunos centímetros de largo. (Véase Fig. 3)




2. Láser de Helio-Neón
El láser de helio-neón fue el primer láser de gas que se construyó. Actualmente sigue siendo muy útil y se emplea con mucha frecuencia. Los centros activos de este láser son los átomos de neón, pero la excitación de éstos se realiza a través de los átomos de helio. Una mezcla típica de He-Ne para estos láseres contiene siete partes de helio por una parte de neón. (Véase Fig. 4)




3. El láser de Argón ionizado

Las transiciones radiactivas entre niveles altamente excitados de gases nobles se conocen desde hace largo tiempo, y la oscilación láser en este medio activo data desde la década de los sesenta. Entre estos láseres, el de argón ionizado es el que más se utiliza, debido a sus intensas líneas de emisión en la región azul-verde del espectro electromagnético y a la relativa alta potencia continua que se puede obtener de él. (Véase Fig. 5)

4. Láseres de CO2

El láser de bióxido de carbono CO2 es el ejemplo más importante de los láseres moleculares. El medio activo en este láser es una mezcla de bióxido de carbono (CO2), nitrógeno (N2) y helio (He), aunque las transiciones láser se llevan a cabo en los niveles energéticos del CO2. Como en seguida veremos, el N2 y el He son importantes para los procesos de excitación y desexcitación de la molécula de CO2. (Véase Fig. 6 y 7)





5. Láser de gas dinámico de CO2

La diferencia fundamental entre un láser de gas dinámico y un láser convencional de CO2 radica en el método de bombeo empleado. En el láser de gas dinámico la radiación láser es producida al enfriar rápidamente una mezcla de gas precalentado que fluye a lo largo de una tobera hasta la cavidad del resonador. Por las altas potencias que es capaz de proporcionar se ha convertido en una importante alternativa para ciertas aplicaciones industriales. (Véase Fig. 8)


6. Láser de soluciones líquidas orgánicas


El medio activo en este tipo de láseres está compuesto por líquidos en los que se han disuelto compuestos orgánicos, entendidos estos últimos cómo los hidrocarburos y sus derivados. Estos láseres son bombeados óptica mente y como en seguida veremos, una de sus más importantes características radica en que pueden emitir radiación láser en anchas bandas de longitud de onda, es decir que son "sintonizables". (Véase Fig. 9)




7. Láseres de semiconductores
Los láseres de semiconductores son los láseres más eficientes, baratos y pequeños que es posible obtener en la actualidad. Desde su invención en 1962 se han mantenido como líderes en muchas aplicaciones científico-tecnológicas y su continua producción masiva nos da un inicio de que esta situación se prolongará por mucho tiempo. (Véase Fig. 10)





http://www.monografias.com/trabajos61/laser-aplicaciones/laser-aplicaciones2.shtml